Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 106
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732036

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Bivalvia , Pectinidae , Receptors, Somatostatin , Animals , Pectinidae/genetics , Pectinidae/growth & development , Pectinidae/metabolism , Bivalvia/genetics , Bivalvia/growth & development , Bivalvia/metabolism , Receptors, Somatostatin/genetics , Receptors, Somatostatin/metabolism , Phylogeny , RNA Interference , Gene Expression Regulation, Developmental
2.
J Phys Chem Lett ; : 5267-5275, 2024 May 09.
Article En | MEDLINE | ID: mdl-38721991

Tin-based perovskite solar cells (Sn-PSCs) without toxic lead ions outperform other types of lead-free PSCs in terms of photovoltaic performance. To avoid the oxidation of Sn2+ cations and the formation of vacancy defects, most reports involve the addition of SnF2 to the perovskite precursor solution, but hybrid tin halide (Sn-PVK) films still suffer from poor crystallinity and stability. In this work, we used an alternative additive of tin trifluoromethanesulfonate (Sn(OTF)2). Compared to SnF2, the solubility of Sn(OTF)2 in the precursor solution is greatly improved, and the crystal nucleation process is delayed, resulting in the enhancement of crystal growth. The coordination ability of the OTF- anions suppresses the oxidation of Sn2+ cations, which promotes the stability of Sn-PVK films. By replacing the conventional additive of SnF2 with Sn(OTF)2, the device achieves an increase in power conversion efficiency from 7.96% to 10.3%, while the stability of the devices is improved simultaneously.

3.
Small ; : e2307079, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700056

Siphon is an effective method to transfer liquid from a higher to a lower level, which has many applications in hygienic design, clinical apparatus, and hydraulic engineering. Traditional operation requires energy to overcome gravity and establish flow in a closed system. Achieving sustainable high flux siphon drainage without energy input remains a challenge due to viscous dissipation. Here, an unexpected open siphon behavior on the South American pitcher plant Heliamphora minor consisting of trichomes covered pitcher and a wedge-shaped sheath is examined. Exploiting the concept of Digital Twin, a new biomimetic research method by transforming the biological sample to a virtual 3D model is proposed and unveiled that maintained connection of wicking on sub-millimeter long trichomes due to asymmetric pressure distribution and ascending in wedge sheath under unbalanced pressure forms continuous surface flow. Exploring this mechanism, a biomimetic siphon device achieving continuous high flux exposed to ambient air is constructed. Besides, particles floating on the meniscus in the outside wedge move under a curvature gradient as water ascends, which implies a biological nutrient capture method and new dust collection manner in the drainage system. Applying the underlying principle enhances the siphon efficiency of floor drains and has the potential for other liquid transfer device design improvements.

4.
Angew Chem Int Ed Engl ; 63(19): e202319997, 2024 May 06.
Article En | MEDLINE | ID: mdl-38499464

High ambipolar mobility emissive conjugated polymers (HAME-CPs) are perfect candidates for organic optoelectronic devices, such as polymer light emitting transistors. However, due to intrinsic trade-off relationship between high ambipolar mobility and strong solid-state luminescence, the development of HAME-CPs suffers from high structural and synthetic complexity. Herein, a universal design principle and simple synthetic approach for HAME-CPs are developed. A series of simple non-fused polymers composed of charge transfer units, π bridges and emissive units are synthesized via a two-step microwave assisted C-H arylation and direct arylation polymerization protocol with high total yields up to 61 %. The synthetic protocol is verified valid among 7 monomers and 8 polymers. Most importantly, all 8 conjugated polymers have strong solid-state emission with high photoluminescence quantum yields up to 24 %. Furthermore, 4 polymers exhibit high ambipolar field effect mobility up to 10-2 cm2 V-1 s-1, and can be used in multifunctional optoelectronic devices. This work opens a new avenue for developing HAME-CPs by efficient synthesis and rational design.

5.
BMC Plant Biol ; 24(1): 89, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38317071

BACKGROUND: Geological movements and climatic fluctuations stand as pivotal catalysts driving speciation and phylogenetic evolution. The genus Polyspora Sweet (Theaceae), prominently found across the Malay Archipelagos and Indochina Peninsula in tropical Asia, exhibits its northernmost distribution in China. In this study, we investigated the evolutionary and biogeographical history of the genus Polyspora in China, shedding light on the mechanisms by which these species respond to ancient geological and climatic fluctuations. METHODS: Phylogenetic relationships of 32 representative species of Theaceae were reconstructed based on the chloroplast genome and ribosome 18-26 S rRNA datasets. Species divergence time was estimated using molecular clock and five fossil calibration. The phylogeography and population genetics in 379 individuals from 32 populations of eight species were analyzed using chloroplast gene sequences (trnH-psbA, rpoB-trnC and petN-psbM), revealing the glacial refugia of each species, and exploring the causes of the phylogeographic patterns. RESULTS: We found that Chinese Polyspora species diverged in the middle Miocene, showing a tropical-subtropical divergence order. A total of 52 haplotypes were identified by the combined chloroplast sequences. Chinese Polyspora exhibited a distinct phylogeographical structure, which could be divided into two clades and eight genealogical subdivisions. The divergence between the two clades occurred approximately 20.67 Ma. Analysis of molecular variance revealed that the genetic variation mainly occurred between species (77.91%). At the species level, Polyspora axillaris consists of three lineages, while P. speciosa had two lineages. The major lineages of Chinese Polyspora diverged between 12 and 15 Ma during the middle to late Miocene. The peak period of haplotype differentiation in each species occurred around the transition from the last interglacial to the last glacial period, approximately 6 Ma ago. CONCLUSION: The primary geographical distribution pattern of Chinese Polyspora was established prior to the last glacial maximum, and the population historical dynamics were relatively stable. The geological and climatic turbulence during the Quaternary glacial period had minimal impact on the distribution pattern of the genus. The genus coped with Quaternary climate turbulence by glacial in situ survival in multiple refuges. The Sino-Vietnam border and Nanling corridor might be the genetic mixing center of Polyspora.


Genetic Variation , Genetics, Population , Humans , Phylogeography , Phylogeny , China , Asia , Haplotypes/genetics , DNA, Chloroplast/genetics , Evolution, Molecular
6.
Neuroscience ; 541: 14-22, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38280511

Innate defensive behavior is important for animal survival. The Vglut2+ neurons in the ventral tegmental area (VTA) have been demonstrated to play important roles in innate defensive behaviors, but the neural circuit mechanism is still unclear. Here, we find that VTA - zona incerta (ZI) glutamatergic projection is involved in regulating innate fear responses. Combining calcium signal recording and chemogentics, we find that VTA-Vglut2+ neurons respond to foot shock stimulus. Inhibition of VTA-Vglut2+ neurons reduces foot shock-evoked freezing, while chemogentic activation of these neurons results in an enhanced fear response. Using viral tracing and immunofluorescence, we show that VTA - Vglut2+ neurons send direct excitatory outputs to the ZI. Moreover, we find that the activity of VTAVglut2 - ZI projection is pivotal in modulating fear response. Together, our study reveals a new VTA - ZI glutamatergic circuit in mediating innate fear response and provides a potential target for treating post-traumatic stress disorder.


Ventral Tegmental Area , Zona Incerta , Animals , Ventral Tegmental Area/physiology , Neurons/physiology , Fluorescent Antibody Technique , Fear/physiology
7.
Angew Chem Int Ed Engl ; 63(11): e202319380, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38246876

Organic light-emitting transistors (OLETs) are highly integrated and minimized optoelectronic devices with significant potential superiority in smart displays and optical communications. To realize these various applications, it is urgently needed for color-tunable emission in OLETs, but remains a great challenge as a result of the difficulty for designing organic semiconductors simultaneously integrating high carrier mobility, strong solid-state emission, and the ability for potential tunable colors. Herein, a high mobility emissive excimer organic semiconductor, 2,7-di(2-anthryl)-9H-fluorene (2,7-DAF) was reasonably designed by introducing a rotatable carbon-carbon single bond connecting two anthracene groups at the 2,7-sites of fluorene, and the small torsion angles simultaneously guarantee effective conjugation and suppress fluorescence quenching. Indeed, the unique stable dimer arrangement and herringbone packing mode of 2,7-DAF single crystal enables its superior integrated optoelectronic properties with high carrier mobility of 2.16 cm2 ⋅ V-1 ⋅ s-1 , and strong excimer emission with absolute photoluminescence quantum yield (PLQY) of 47.4 %. Furthermore, the voltage-dependent electrically induced color-tunable emission from orange to blue was also demonstrated for an individual 2,7-DAF single crystal based OLETs for the first time. This work opens the door for a new class of high mobility emissive excimer organic semiconductors, and provides a good platform for the study of color-tunable OLETs.

8.
Oncogene ; 43(7): 495-510, 2024 Feb.
Article En | MEDLINE | ID: mdl-38168654

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies in the world with poor prognosis. Despite the promising applications of immunotherapy, the objective response rate is still unsatisfactory. We have previously shown that Hippo/YAP signaling acts as a powerful tumor promoter in ESCC. However, whether Hippo/YAP signaling is involved in tumor immune escape in ESCC remains largely unknown. Here, we show that YAP directly activates transcription of the "don't eat me" signal CD24, and plays a crucial role in driving tumor cells to avoid phagocytosis by macrophages. Mechanistically, YAP regulates CD24 expression by interacting with TEAD and binding the CD24 promoter to initiate transcription, which facilitates tumor cell escape from macrophage-mediated immune attack. Our animal model data and clinical data show that YAP combined with CD24 in tumor microenvironment redefines the impact of TAMs on the prognosis of ESCC patients which will provide a valuable basis for precision medicine. Moreover, treatment with YAP inhibitor altered the distribution of macrophages and suppressed tumorigenesis and progression of ESCC in vivo. Together, our study provides a novel link between Hippo/YAP signaling and macrophage-mediated immune escape, which suggests that the Hippo-YAP-CD24 axis may act as a promising target to improve the prognosis of ESCC patients. A proposed model for the regulatory mechanism of Hippo-YAP-CD24-signaling axis in the tumor-associated macrophages mediated immune escape.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Humans , Signal Transduction/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Esophageal Neoplasms/genetics , Immune Evasion , YAP-Signaling Proteins , Macrophages/metabolism , Phagocytosis , Cell Line, Tumor , Tumor Microenvironment , CD24 Antigen
9.
Adv Mater ; 36(1): e2306725, 2024 Jan.
Article En | MEDLINE | ID: mdl-37671626

The construction of high-performance white organic light-emitting transistor (OLET) with uniform area emission is crucial for smart display technologies but remains greatly challenging. Herein, high-efficiency uniform area-emissive OLETs based on a unique lateral-integrated device configuration which incorporates efficient energy transfer of phosphorescent and fluorescent guests, enabling color-tunable and white emission, are demonstrated. Through precisely regulating the energy transfer between host and guests, high external quantum efficiency of 13.9% for white-emission OLETs is achieved due to the improved high exciton utilization and light outcoupling efficiency which is the highest value reported so far for OLETs and prevents exciton-charge annihilation and electrode photon losses. Moreover, good loop stability is also achieved, along with effective gate tunability and ultralow driving voltage of below 5 V. Finally, a 4 × 6 white-emission OLET array for full-color display is demonstrated for the first time, suggesting its great potential applications for advanced display technologies.

10.
Soft Matter ; 20(10): 2232-2242, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-37909256

Fast and stable water drainage is essential for living organisms, drainage plane construction, and protection of infrastructure from damage during rainfall. Unlike traditional anti-overflow drainage methods that rely on hydrophobic or sharped edges, this study demonstrates a bottom overflow-induced drainage model inspired by the water path employed by Pontederia crassipes leaves, leading to fast and stable drainage. A superhydrophilic bottom surface guides water to overflow and pin at the bottom of a thin sheet, resulting in dripping at a higher frequency and reduced water retention. This bottom drainage idea assists large-scale thin sheets to function as efficient and stable drainage surfaces in simulated rain environments. The flexible thin sheet can also be feasibly attached to dusty substrates to effectively remove dusty rainwater with slight dust residue. The bioinspired approach presented herein suggests a promising potential for efficient water drainage on outdoor functional photovoltaic surfaces, such as solar panels and radomes, thus ensuring effective energy conversion and stable signal transmission.

11.
Adv Sci (Weinh) ; 11(6): e2306833, 2024 Feb.
Article En | MEDLINE | ID: mdl-38044320

Solar-driven interfacial evaporation (SDIE) has attracted great attention by offering a zero-carbon-emission solution for clean water production. The manipulation of the surface structure of the evaporator markedly promotes the enhancement of light capture and the improvement of evaporation performance. Herein, inspired by seedless lotus pod, a flexible pristine polypyrrole (PPy) membrane with macro/micro-bubble and nanotube asymmetric structure is fabricated through template-assisted interfacial polymerization. The macro- and micro-hierarchical structure of the open bubbles enable multiple reflections inner and among the bubble cavities for enhanced light trapping and omnidirectional photothermal conversion. In addition, the multilevel structure (macro/micro/nano) of the asymmetric PPy (PPy-A) membrane induces water evaporation in the form of clusters, leading to a reduction of water evaporation enthalpy. The PPy-A membranes achieve a full-spectrum light absorption of 96.3% and high evaporation rate of 2.03 kg m-2  h-1 under 1 sun. Long-term stable desalination is also verified with PPy-A membranes by applying one-way water channel. This study demonstrates the feasibility of pristine PPy membranes in SDIE applications, providing guidelines for modulation of the evaporator topologies toward high-efficient solar evaporation.

12.
Mol Pain ; 19: 17448069231218352, 2023.
Article En | MEDLINE | ID: mdl-37982151

Neuropathic pain (NP) is often accompanied by psychiatric comorbidities and currently lacks effective treatment. Prior research has shown that HDAC6 plays a crucial role in pain sensitization, but the specific mechanisms remain unclear. HDAC6 inhibitors have been found to alleviate mechanical allodynia caused by inflammation and peripheral nerve damage. In this study, we investigated the cellular mechanisms of HDAC6 in the development and maintenance of neuropathic pain. Our findings indicate that HDAC6 expression in the spinal cord (SC) is upregulated in a time-dependent manner following chronic constriction injury (CCI). HDAC6 is primarily expressed in neurons and microglia in the spinal cord. CCI-induced HDAC6 production was abolished by intrathecal injection of a microglia inhibitor. ACY-1215, a specific HDAC6 inhibitor, significantly reduced CCI-induced mechanical allodynia, but not thermal hyperalgesia. ACY-1215 also inhibited neuron activation and suppressed CCI-induced pyroptosis and neuroinflammatory responses. In summary, our results suggest that HDAC6 contributes to the development and maintenance of NP through neuronal activation and neuroinflammation. HDAC6 may be a promising target for treating NP.


Hyperalgesia , Neuralgia , Rats , Animals , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Neuroinflammatory Diseases , Constriction , Nociception , Neuralgia/metabolism , Spinal Cord/metabolism , Inflammation/metabolism , Neurons/metabolism , Histone Deacetylase 6/metabolism
13.
Anal Chem ; 95(48): 17533-17540, 2023 12 05.
Article En | MEDLINE | ID: mdl-37993803

Adenosine triphosphate (ATP) is the major energy carrier in organisms, and there are many cellular proteins that can bind to ATP. Among these proteins, kinases are key regulators in several cell signaling processes, and aberrant kinase signaling contributes to the development of many human diseases, including cancer. Hence, small-molecule kinase inhibitors have been successfully used for the treatment of various diseases. Since the ATP-binding pockets are similar for many kinases, it is very important to evaluate the selectivity of different kinase inhibitors. We report here a clickable ATP photoaffinity probe for the global profiling of ATP-binding proteins. After incubating the protein lysate with the ATP probe followed by ultraviolet (UV) irradiation, ATP-binding proteins were labeled with an alkyne handle for subsequent biotin conjugation through click chemistry. Labeled proteins were enriched with streptavidin beads, digested with trypsin, and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). More than 400 ATP-binding proteins, including approximately 200 kinases, could be identified in a single LC-MS/MS run in the data-dependent acquisition mode. We then applied this method to the analysis of targets of three selected ATP-competitive kinase inhibitors. We were able to successfully identify some of their reported target proteins from label-free quantification results and validated the results using Western blot analyses. Together, we developed a clickable ATP photoaffinity probe for proteome-wide profiling of ATP-binding proteins and demonstrated that this chemoproteomic method is amenable to high-throughput target identification of kinase inhibitors.


Adenosine Triphosphate , Carrier Proteins , Humans , Adenosine Triphosphate/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Proteins/metabolism , Phosphotransferases/metabolism
14.
Sci Adv ; 9(36): eadi5990, 2023 Sep 08.
Article En | MEDLINE | ID: mdl-37682994

Liquid entrainment with a solid architecture passing through the fluid-fluid interface is ubiquitous and widely used in industrial processes as a liquid transfer method. Besides liquid properties, solid structures play a core role in entrainment. Although the influence of its macroscopic curvatures and microscale roughness has attracted years of research, the effect and potential of the commonly seen millimetric structures have not been sufficiently explored and exploited. Here, we demonstrate enhanced liquid entrainment on the millimetric structured surface by the co-effect of viscosity and capillarity for sustained liquid transfer of small deviation, including high-quantity uptake and practically operational drainage with small and relatively uniform droplet dripping time of varied liquid viscosities. With the overall process of viscous-capillary entrainment, we achieve stable cyclical arrayed liquid transport, showing its potential for sustained liquid transfer in intractable situations in laboratory, industry, and even daily life.

15.
Angew Chem Int Ed Engl ; 62(42): e202308146, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37632256

The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46-67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit. Finally, efficient electroluminescence properties with high-quality blue emission (CIE (0.179, 0.119)) and a narrow full-width at half-maximum of 48 nm are achieved for DNaDBSO-based SS-OLET, showing good spatial control of the recombination zone in conducting channel. This work provides a new avenue for designing ambipolar emissive organic semiconductors by incorporating the synergistic effect of energy level regulation and molecular-metal interaction, which would advance the development of superior optoelectronic materials and their high-density integrated optoelectronic devices and circuits.

16.
Cell Rep ; 42(7): 112719, 2023 07 25.
Article En | MEDLINE | ID: mdl-37392387

The neural circuit mechanisms underlying postoperative cognitive dysfunction (POCD) remain elusive. We hypothesized that projections from the medial prefrontal cortex (mPFC) to the amygdala are involved in POCD. A mouse model of POCD in which isoflurane (1.5%) combined with laparotomy was used. Virally assisted tracing techniques were used to label the relevant pathways. Fear conditioning, immunofluorescence, whole-cell patch-clamp recordings, and chemogenetic and optogenetic techniques were applied to investigate the role of mPFC-amygdala projections in POCD. We find that surgery impairs memory consolidation but not retrieval of consolidated memories. In POCD mice, the glutamatergic pathway from the prelimbic cortex to the basolateral amygdala (PL-BLA) shows reduced activity, whereas the glutamatergic pathway from the infralimbic cortex to the basomedial amygdala (IL-BMA) shows enhanced activity. Our study indicates that the hypoactivity in the PL-BLA pathway interrupts memory consolidation, whereas the hyperactivity in the IL-BMA promotes memory extinction, in POCD mice.


Basolateral Nuclear Complex , Prefrontal Cortex , Mice , Animals , Amygdala , Cerebral Cortex , Memory Disorders , Neural Pathways
17.
Article En | MEDLINE | ID: mdl-37027557

Graph-based clustering approaches, especially the family of spectral clustering, have been widely used in machine learning areas. The alternatives usually engage a similarity matrix that is constructed in advance or learned from a probabilistic perspective. However, unreasonable similarity matrix construction inevitably leads to performance degradation, and the sum-to-one probability constraints may make the approaches sensitive to noisy scenarios. To address these issues, the notion of typicality-aware adaptive similarity matrix learning is presented in this study. The typicality (possibility) rather than the probability of each sample being a neighbor of other samples is measured and adaptively learned. By introducing a robust balance term, the similarity between any pairs of samples is only related to the distance between them, yet it is not affected by other samples. Therefore, the impact caused by the noisy data or outliers can be alleviated, and meanwhile, the neighborhood structures can be well captured according to the joint distance between samples and their spectral embeddings. Moreover, the generated similarity matrix has block diagonal properties that are beneficial to correct clustering. Interestingly, the results optimized by the typicality-aware adaptive similarity matrix learning share the common essence with the Gaussian kernel function, and the latter can be directly derived from the former. Extensive experiments on synthetic and well-known benchmark datasets demonstrate the superiority of the proposed idea when comparing with some state-of-the-art methods.

18.
Zhongguo Zhong Yao Za Zhi ; 48(4): 1098-1107, 2023 Feb.
Article Zh | MEDLINE | ID: mdl-36872280

To explore the research hotspots and frontier directions of pyroptosis in the field of traditional Chinese medicine(TCM), the authors searched CNKI and Web of Science for literature related to pyroptosis in TCM, screened literature according to the search strategy and inclusion criteria, and analyzed the publication trend of the included literature. VOSviewer was used to draw author cooperation and keyword co-occurrence network diagrams, and CiteSpace was employed for keyword clustering, emergence, and timeline view. Finally, 507 Chinese literature and 464 English literature were included, and it was found that the number of Chinese and English literature was increasing rapidly year by year. The co-occurrence of the authors showed that in terms of Chinese literature, there was a representative research team composed of DU Guan-hua, WANG Shou-bao and FANG Lian-hua, and for English literature, the representative research team was composed of XIAO Xiao-he, BAI Zhao-fang and XU Guang. The network visualization of Chinese and English keywords revealed that inflammation, apoptosis, oxidative stress, autophagy, organ damage, fibrosis, atherosclerosis, and ischemia-reperfusion injury were the primary research diseases and pathological processes in TCM; berberine, resveratrol, puerarin, na-ringenin, astragaloside Ⅳ, and baicalin were the representative active ingredients; NLRP3/caspase-1/GSDMD, TLR4/NF-κB/NLRP3, and p38/MAPK signaling pathways were the main research pathways. Keyword clustering, emergence, and timeline analysis indicated that the pyroptosis research in TCM focused on the mechanism of TCM monomers and compounds intervening in diseases and pathological processes. Pyroptosis is a research hotspot in the area of TCM, and the current discussion mainly focuses on the mechanism of the therapeutic effect of TCM.


Medicine, Chinese Traditional , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein , Pattern Recognition, Automated , Apoptosis
20.
Chem Soc Rev ; 52(4): 1331-1381, 2023 Feb 20.
Article En | MEDLINE | ID: mdl-36723084

Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.

...